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The X factor in neurodegeneration
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Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the
increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective
therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for
women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for
discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the
context of declining levels of sex hormones during aging.

Introduction
The study of sex differences is a way to capitalize on a known
clinical observation, mechanistically disentangle it at the labo-
ratory bench, and then translate findings back to the clinic as a
novel treatment trial tailored for each sex, a “Bedside to Bench to
Bedside” approach (Voskuhl, 2020; Voskuhl and Gold, 2012). The
importance of sex as a biologic variable has been recognized by
the National Institutes of Health (Clayton, 2016; Clayton and
Collins, 2014). Studying sex differences brings scientific rigor
and clinical relevance. If a given disease mechanism is discov-
ered not only in one sex but instead in both sexes, then it is
relevant to the entire population. On the other hand, if a
mechanism is prominent in one sex but not the other, then this
is an invaluable clue toward discovery of a potential disease
modifier that can be optimized for the relevant sex.

Sex differences occur during health and disease. These sex
differences can be mediated by biologic effects, environmental
effects, or both. Observations of sex differences across species,
for example, between female and male mice in a vivarium un-
derscore the role of biologic effects.

Biologic sex differences can be due to sex chromosomes (XX
versus XY), sex hormones (estrogen versus testosterone), or
both. Sex chromosomes and sex hormones can act in a syner-
gistic or antagonistic manner on a given process (Palaszynski
et al., 2005). Compensatory mechanisms may have arisen dur-
ing evolution to promote survival of each sex, reaching an op-
timal balance between sex chromosome and sex hormone
influences, which is distinct for each sex (De Vries, 2004). Ef-
fects of sex chromosomes and sex hormones are cell-specific and
tissue-specific. In diseases that involve multiple organ systems,
a deleterious versus beneficial effect of being female or male on

disease must be determined in each tissue. For example in
multiple sclerosis (MS), an autoimmune disease that attacks the
central nervous system (CNS), the effect of a given sex chro-
mosome or sex hormone on disease may differ based on its in-
fluence on inflammation in the peripheral immune system
versus neurodegeneration in the CNS. Analysis of data from the
Genotype-Tissue Expression project examined sex differences in
gene expression across 44 tissues in humans and showed that
37% of all genes exhibit sex-biased expression in at least one
tissue (Oliva et al., 2020). In another study using the same da-
taset focusing on 29 human healthy tissues, whole-genome ex-
pression profiles showed distinct sex-biased regulatory
networks in each tissue (Lopes-Ramos et al., 2020). Further-
more, sex differences in gene expression are region-specific and
cell-specific within the brain (Kim-Hellmuth et al., 2020; Oliva
et al., 2020). These studies underscore the pervasiveness and
complexity of sex differences in gene expression during health
with implications for sex differences in neurodegenerative dis-
eases, which can be distinct depending on the brain regions and
cells involved. Determining the contribution of sex chromo-
somes and sex hormones to sex differences in neurodegenera-
tive diseases is a new frontier in the development of novel
therapeutics optimally tailored for women and men.

Here, we review sex differences in neurodegeneration and
discuss how sex chromosomes modulate autosomal gene ex-
pression and phenotype, and then propose future directions to
identify brain region–specific and cell-specific mechanisms of
neurodegeneration in each sex.
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Sex differences in the brain during health and disease
Sex differences in the brain occur across species, from humans
to mice (Corre et al., 2016; Gur et al., 1999; Luders and Toga,
2010; Luders et al., 2014; Meyer et al., 2017; Spring et al., 2007;
Voskuhl and Klein, 2019), providing evidence for biological
differences due to sex hormones or sex chromosomes. Healthy
male brains are on average larger than those of females, main-
taining proportion relative to body size. That said, there are also
regional differences in substructure volumes even when ac-
counting for differences in brain size. For example, dorsal
(posterior) versus ventral (anterior) hippocampus differ re-
garding which is larger in each sex (Kurth et al., 2017; Meyer
et al., 2017; Spring et al., 2007). Sex differences in brain struc-
ture have also been found in adolescents (ages 9–10 yr old), as
shown by analysis of data from the Adolescent Brain Cognitive
Development study (Brennan et al., 2021). The role of sex dif-
ferences in brain structure during health as it pertains to sex
differences during neurodevelopmental disorders and neuro-
degenerative diseases is an area of active investigation
(Wierenga et al., 2022). In addition, sex differences in brain
structure during health are critical to take into account when
comparing brain substructures during disease. The comparison
between substructure volumes in females versus males with
disease is confounded by the sex difference during health. To
remove this confound, substructure volumes should be com-
pared between females with disease versus females that are
healthy as well as between males with disease versus males that
are healthy. This permits subsequent determination of whether
there is a sex difference in the effect of disease on substructure
atrophy (Voskuhl et al., 2020).

Beyond brain structure, there are sex differences at the
functional, cellular, and molecular and levels. Resting-state
functional connectivity using functional magnetic resonance
imaging (fMRI) has shown sex differences during health, which
may impact the CNS response to a disease. Using imaging data
from the Human Connectome Project and the 1000BRAINS
study, sex aligned with region-specific differences in brain
connectivity. Brain regions most distinct between the sexes in-
cluded the cingulate cortex, medial and lateral frontal cortex,
temporoparietal regions, insula, and precuneus (Weis et al.,
2020). In other studies, males displayed more between-module
connectivity, while females demonstrated more within-module
connectivity, which aligned with sex differences in performance
on cognitive domain-specific testing (Satterthwaite et al., 2015).
Also, during aging, the default-mode network showed decreases
in connectivity in both males and females, but at different rates
(Scheinost et al., 2015).

Sex differences in brain at the cellular and molecular levels
are vast and have been the topic of reviews for decades
(Cosgrove et al., 2007; McCarthy et al., 2017). Previous studies
focused on sex hormone effects, beginning with localization of
sex hormone receptor expressionwithin brain, initially estrogen
receptor α (ERα), then ERβ (Merchenthaler et al., 2004; Mitra
et al., 2003; Shughrue et al., 2002). Recently it has become ap-
parent that a CNS cell-specific approach to hormone receptor
expression in vivo must be determined in each region given the
known regional heterogeneity of microglia (Grabert et al., 2016),

astrocytes (Chai et al., 2017; Khakh and Sofroniew, 2015), oli-
godendrocytes (Marques et al., 2016; Vigano et al., 2013), and
neurons (Ko et al., 2013). Indeed, sex differences in sex hormone
receptor expression should be evaluated similar to sex differ-
ences in transcriptomics, namely in a CNS region-specific and
cell-specific manner (Kim-Hellmuth et al., 2020; Oliva et al.,
2020). This is challenging because sex hormone receptor ex-
pression is variable since sex hormones can affect the level of
expression of their own receptor. Sex hormone receptor ex-
pression can be affected by menstrual cycle phase, menopause,
and andropause. Sex hormone receptor expression can also be
altered during brain injury, as shown by the upregulation of ERα
in astrocytes (Azcoitia et al., 2010; DonCarlos et al., 2006;
Garcia-Ovejero et al., 2002). Beyond hormone receptor expres-
sion and ligation, function depends on tissue-specific and cell-
specific intracellular transcription factors and signaling. For
example, ligation of ERα versus ERβ can be synergistic in some
tissues and antagonistic in others (Paech et al., 1997; Shang and
Brown, 2002; Tiwari-Woodruff et al., 2007). Beyond sex hor-
mones, a new avenue of sex differences research in the brain is a
region-specific and cell-specific approach to sex chromosome
gene expression.

There are sex differences in brain not only during health but
also during neurodegenerative diseases (Voskuhl and Klein,
2019; Young and Pfaff, 2014). In MS, despite the fact that
women have more robust peripheral immune responses (Klein
and Flanagan, 2016; Libert et al., 2010; Moldovan et al., 2008;
Pelfrey et al., 2002) and are more susceptible to disease (Krysko
et al., 2020; Voskuhl and Gold, 2012; Whitacre et al., 1999), MS
men have worse disability progression (Confavreux et al., 2003;
Koch et al., 2010; Ribbons et al., 2015; Weinshenker, 1994). Re-
garding timing, subcortical gray matter atrophy and cognitive
deficits are worse in MS men during young adulthood to midlife
(Beatty and Aupperle, 2002; Savettieri et al., 2004; Schoonheim
et al., 2012; Voskuhl et al., 2020). In contrast, older MS women
have a worsening of their MS disabilities after menopause
(Baroncini et al., 2019; Bove et al., 2014a; Bove et al., 2016a; Bove
et al., 2016b; Graves et al., 2018; Holmqvist et al., 2006; Smith
and Studd, 1992).

Cognitive deficits occur in healthy women with menopause,
which have been quantified by performance on objective cog-
nitive tests of verbal memory and processing speed (Dumas
et al., 2008; Epperson et al., 2013; Greendale et al., 2009;
Greendale et al., 2010; Miller et al., 2013; Rasgon et al., 2005;
Wroolie et al., 2011). This is termed “brain fog” and is consistent
with loss of neuroprotective estradiol with menopause (Bove
et al., 2014b; Halbreich et al., 1995; Miller et al., 2013; Rasgon
et al., 2005; Sherwin, 2009; Sherwin et al., 2011; Wroolie et al.,
2011).

Alzheimer’s disease (AD) is more common in females, which
is not accounted for merely by greater longevity in females
(Mielke et al., 2014; Snyder et al., 2016; Uchoa et al., 2016).
However, men may be at greater risk for mild cognitive im-
pairment at younger ages (Mielke et al., 2014). Also, at younger
ages, the rate of progression from mild cognitive impairment to
AD is higher in men, while at older ages the rate is higher in
women (Snyder et al., 2016). Loss of endogenous sex hormones
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in menopausal women and andropausal men is associated with
cognitive decline and increased AD risk (Carter et al., 2012; Pike,
2017; Vest and Pike, 2013). Similar deleterious effects of meno-
pause and andropause may be due to testosterone’s conversion
to estradiol in brain by aromatase, such that lower levels of ei-
ther hormone during aging can decrease ER ligation in brain
(Spence and Voskuhl, 2012). This is not mutually exclusive of an
effect of lower testosterone levels on ligation of androgen re-
ceptors in men (Cherrier et al., 2005).

Parkinson’s disease (PD) has a higher incidence inmales than
females with a ratio of 2:1 (Oltra et al., 2022; Shulman and Bhat,
2006), and progression of degeneration of the nigrostriatal
system is thought to be worse in men (Jurado-Coronel et al.,
2018). Men with PD have more severe cognitive impairment,
namely executive function and processing speed as measured by
the Montreal Cognitive Assessment and the Symbol Digits Mo-
dalities Test, respectively (Oltra et al., 2022; Oltra et al., 2021;
Reekes et al., 2020). Also, PDmales have worse cortical thinning
in postcentral and precentral regions and smaller volumes in
thalamus, caudate, putamen, pallidum, hippocampus, and
brainstem compared with PD females (Oltra et al., 2022; Oltra
et al., 2021). Whether testosterone deficiency in aging males or
exposure to pesticides that act via estrogen-blocking properties
can predispose to PD is a subject of speculation (Brenner, 2012;
Okun et al., 2004; Okun et al., 2006; Okun et al., 2002). ER li-
gands have been proposed as possible candidate future treat-
ments in PD (Bourque et al., 2019; Currie et al., 2004; McFarland
et al., 2013).

Sex differences in the brain with aging
Aging is associated with brain atrophy, neurodegeneration, and
cognitive decline in healthy people. It is also the most important
risk factor for susceptibility to neurodegenerative diseases. How
sex hormones (estrogen, testosterone) and sex chromosomes
(XX, XY) influence neurodegeneration across the lifespan re-
mains unclear. We hypothesize that the effect of biological sex
across the lifespan is complex, with sex hormones and sex
chromosomes contributing differently depending on the timing
of the loss of neuroprotective sex hormones during menopause
versus andropause. Andropause starts at age 30 with gradual
decline of testosterone to old age (Fig. 1, blue). Menopause starts
later (ages 46–52) with an abrupt decline in estrogen (Fig. 1, red).
In age 75–90 yr, loss of neuroprotective sex hormones in both
sexes may unmask underlying effects of sex chromosomes (XX
versus XY) that persist across the lifespan (Fig. 1, green). Aging
female and male C57BL/6 WT mice underwent in vivo MRI to
assess regional brain atrophy and were assessed for underlying
neuropathology as well as cognitive impairment. An age-by-sex
hormone interaction was discovered (Itoh et al., 2022). Ovari-
ectomized females demonstrated dorsal hippocampal atrophy at
midlife, but not young age, which was associated with worse
spatial memory on behavioral testing and more glial activation
and synaptic loss on neuropathology. Deletion of ERβ in as-
trocytes, but not neurons, recapitulated these deficits in midlife
females. Since sex hormones have been studied more exten-
sively than sex chromosomes, we will now focus on sex chro-
mosome effects on neurodegeneration. That said, observations

Figure 1. Sex hormone and sex chromo-
some effects. Age-related changes in sex
hormones (estrogen versus testosterone) in
the context of sex chromosome (XX versus XY)
effects across the lifespan. Estrogen, red; tes-
tosterone, blue; sex chromosomes, green.
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made when investigating the role of sex chromosomes in neu-
rodegeneration must take into account coexisting effects of sex
hormones (Fig. 1).

The study of sex chromosomes independent of sex hormones
Since XX females have ovaries (estrogen) and XY males have
testes (testosterone), it is important to remove the confound of a
difference in sex hormones when studying sex chromosome
effects. Sex hormone effects occur both during development
(organizational) and adulthood (activational). Gonadectomy of
females and males during adulthood does not control for sex
hormone effects during development (prior to gonadectomy).
Elegant studies have established how to disentangle the effect of
XX versus XY sex chromosome complement from the effect of
gonadal type (sex hormones; Smith-Bouvier et al., 2008) using
the Four Core Genotype (FCG) mice (Arnold, 2004; Arnold and
Burgoyne, 2004). This model has been used worldwide to study
sex differences in health (development and adulthood) and
diseases (autoimmunity, cardiovascular, and metabolic, to name
a few; Blencowe et al., 2022). The Y chromosome gene that
encodes for testicular development (sex determiningQ:1 region Y, Sry)
is deleted, with mice designated XY−,Q:2 and they are ovary-
bearing (gonadal females). Comparisons can be made between
XX versus XY−mice that differ in sex chromosome complement,
while sharing a common gonadal type (females throughout life;
Fig. 2). If the Sry trangeneQ:3 is added back at an autosomal loca-
tion, comparisons can be made between XX Sry versus XY− Sry
mice that differ in sex chromosome complement, again sharing a
common gonadal type (males throughout life), (Fig. 2). Com-
parisons between XX versus XY−mice can be made in gonadally
intact mice, as well as in gonadectomized mice, since removal of
sex hormones may unmask an effect of sex chromosomes,

making an XX versus XY− differencemore prominent. Opposing
effects of sex hormones and sex chromosomes suggest that even
when there is no sex difference in disease in WT, gonadally
intact mice, the study of sex hormones and sex chromosomes is
still warranted. The two sexes can overall be in balance, yet may
differ in the underlying influence of sex hormones and sex
chromosomes to reach that balance.

Given the known female bias in several autoimmune diseases
(Klein and Flanagan, 2016; Whitacre et al., 1999), sex chromo-
some effects in peripheral blood immune responses have been
studied. Experimental autoimmune encephalomyelitis (EAE) is a
prototypic model to study autoantigen-specific immune re-
sponses in MS. The relapsing–remitting EAE model on the SJL
background was used to examine the role of sex chromosomes
on immune responses by backcrossing FCG mice onto the SJL
strain. Active EAE was worse in XX mice compared with XY−.
Adoptive transfer of autoantigen-stimulated XX lymph node
cells, compared to XY− cells, to WT females induced worse
clinical disease and neuropathology along with decreased T
helper 2 (Th2) anti-inflammatory cytokines, IL 10 and IL 13
(Smith-Bouvier et al., 2008). These studies demonstrated a role
for sex chromosomes in the immune induction phase of adoptive
EAE, with the XX complement, compared to XY−, more proin-
flammatory. A proinflammatory effect of XX compared to XY−
was also shown in experimental (Smith-Bouvier et al., 2008)
and spontaneous (Sasidhar et al., 2012) lupus models using the
FCG model.

Sex differences vary depending on autosomal genetic back-
ground (or strain of mouse). In contrast to SJL mice with females
worse Q:4, there is no sex difference in EAE walking scores in
C57BL/6 mice (Palaszynski et al., 2004; Papenfuss et al., 2004).
Yet, even in C57BL/6 mice, androgens exert anti-inflammatory

Figure 2. FCG mice. The Y chromosome gene that
encodes for testicular development (Sry) is deleted,
with mice designated XY−. Both XX and XY− mice are
ovary-bearing (red). Comparisons between XX versus
XY− mice sharing a common gonadal type (females
throughout life) reveal sex chromosome effects. When
the Sry trangene is added back at an autosomal loca-
tion, designated Sry, both XX Sry and XY− Sry mice are
testes bearing (blue). Comparisons between XX Sry
versus XY− Sry mice sharing a common gonadal type
(males throughout life) also reveal sex chromosome
effects. Comparisons between mice with a common sex
chromosome complement, with or without the Sry
gene, reveal sex hormone effects (ovary bearing versus
testes bearing throughout life). Comparisons between
mice with a common sex chromosome complement
that are gonadectomized reveal developmental (orga-
nizational) effects of sex hormones (not shown).
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effects on cytokines and peroxisome proliferator-activated re-
ceptor α (PPARα) in T lymphocytes in the immune system
(Doroshenko et al., 2021; Dunn et al., 2007; Zhang et al., 2012).
Conversely, XY sex chromosome complement in the CNS con-
fers a worse neurodegenerative response to immune-mediated
injury (Du et al., 2014). If a male sex hormone and the male sex
chromosome complement exert opposing effects on disease in a
given strain (De Vries, 2005; Palaszynski et al., 2005), then there
may not be a sex difference when comparing males to females.
This demonstrates why disease mechanisms in each sex should
be studied even in the absence of an overall sex difference in
disease.

A deep dive into XX versus XY mediated sex differences
Differences between XX versus XY sex chromosome comple-
ments may be due to (1) the presence or absence of the Y
chromosome, (2) differential imprinting of X genes based on
maternal (Xm) versus paternal (Xp) parent-of-origin in XmXp

versus XmY, and (3) X dosage effects. Much focus is on the X
chromosome instead of Y since the Y chromosome has evolved to
lose most of its genes, except for those involved in male repro-
duction (Burgoyne, 1998). In contrast, the X chromosome con-
tains about 10% of the human genome including a rich
repository of genes, many with immune functions (TLR7 and
TLR8; cluster differentiation 40 ligand; Forkhead box P3; C-X-CMotif
Chemokine Receptor 3; Jiwrajka and Anguera, 2022) and others
that are highly expressed in brain (Synaptophysin; Synapsin;
Synapse Associated Protein 1; Proteolipid Protein 1; Monoamine Ox-
idase A and B; Collenberg et al., 2019; Fassio et al., 2011;
Mallajosyula et al., 2008; Nguyen and Disteche, 2006a; Nguyen
and Disteche, 2006b; Sun et al., 2020; Tarsa and Goda, 2002;
Tatar et al., 2010). Regarding differential imprinting of X genes
based on parent-of-origin (maternal versus paternal), tran-
scriptomes of stimulated CD4+ T lymphocytes showed higher
expression of a cluster of X genes when derived from XY as
compared with XX mice, opposite the direction of an X-dosage
effect. An increase in DNA methylation spanning many regions
of the X chromosome of paternal origin (Xp), as compared with
maternal origin (Xm), was found (Golden et al., 2019). DNA
methylation usually suppresses gene expression, so this result
was consistent with higher expression of a cluster of X genes in
XmY cells because all cells from XmY mice express from the Xm,
so have minimal suppression. In contrast, XmXp mice have half
of their cells expressing from the Xm and half from the Xp due to
random X chromosome inactivation, so the overall cell popula-
tion has relatively more suppression. The implications of these
findings are that parent-of-origin differences in DNA methyla-
tion of the X chromosome can lead to sex differences in X gene
expression, namely higher expression in XmY than XmXp for a
cluster of genes (Golden et al., 2019; Voskuhl et al., 2018).

The effect of having two X chromosomes on susceptibility to
systemic lupus erythematosus, which has a female to male sex
bias of ∼9:1, has been reviewed (Jiwrajka and Anguera, 2022). A
role for partial inactivation of immune genes on the X chro-
mosome resulted in a partial dosage effect of TLR7, with higher
expression in XX than XY (Souyris et al., 2018; Souyris et al.,
2019). Also, skewed X chromosome inactivation has been

observed in immune cells of females with rheumatologic dis-
eases, whereby there is preferential (non-random, not 50%)
activation of the maternal versus the paternal X chromosome
(70% or more; Amos-Landgraf et al., 2006). Implications for
skewed X-inactivation on gene expression at the cell population
level are magnified by the potential for parent-of-origin differ-
ences in methylation and its effect on expression of X chromo-
some genes (Golden et al., 2019; Jiwrajka and Anguera, 2022;
Voskuhl et al., 2018).

X-escapees are X chromosome genes known to escape
X-inactivation (3% in mice and 15% in humans; Berletch et al.,
2011). Sex differences in health and disease could be due to the
dosage of known X-escapees, with higher expression in XX than
XY. Lysine-specific demethylase 6A (Kdm6a) is an
X-chromosome gene known to escape X-inactivation (Disteche
et al., 2002; Greenfield et al., 1998). This gene encodes for a
histone demethylase that removes suppressive histone marks to
broadly upregulate both autosomal and sex chromosome gene
expression. Selective deletion of Kdm6a in CD4+ T lymphocytes
in active EAE in C57BL/6 mice reduced walking disability and
decreased neuropathology in spinal cord. RNA-sequencing of
CD4+ T lymphocytes from conditional knockout (CKO) versus
WT revealed the downregulation of expression of neuro-
inflammation signaling pathway genes (Purinergic Receptor; C-X-
C Motif Chemokine Ligand 10; Tlr1, Amyloid Precursor Protein
[APP]). Peripheral immune responses in the CKO showed less
memory and more naive phenotype, including lower expression
of CD44 on CD62L+ T cells. Analysis of chromatin immunopre-
cipitation sequencing data showed more repressive histone H3
lysine trimethylation (H3K27me3) modifications on the CD44
gene in the CKO (Itoh et al., 2019). Thus, Kdm6awas shown to be
proinflammatory in CD4+ T lymphocytes of C57BL/6 mice and to
confer worse neurodegeneration in the chronic EAE model. In-
terestingly, in a different EAE model, when transgenic Th17 T
lymphocytes were adoptively transferred into NOD Q:5. Scid mice,
Th17 cells from males induced more severe disease, and there
was a higher frequency of pathogenic, IFNγ producing Th17 cells
as compared with those from females. Use of gonadectomy and
the FCG model revealed that XY− genotype, not exposure to
androgens, was responsible for the generation of more en-
cephalitogenic Th17 cells and worse EAE severity in this model
(Doss et al., 2021). Kdm5c, an X-escapee that is a histone H3 ly-
sine 4 demethylase (Berletch et al., 2015), was then overex-
pressed in male Th17 cells using a retroviral vector, and this
reduced Th17 pathogenicity and EAE severity. Thus, higher
doses of Kdm5c were protective in transgenic Th17 cells (Doss
et al., 2021). Another report showed that by restricting
H3K4me3 modification at core promoters, Kdm5c dampens
transcription, but at enhancers Kdm5c stimulates their activity
in mouse embryonic stem cells and neuronal progenitor cells
(Outchkourov et al., 2013). Together, these findings reveal how
X-escapees can regulate gene expression to impact immune re-
sponses and neurodegeneration.

Sex chromosome effects in the CNS
A significantly higher proportion of genes on the X chromosome,
as compared to genes on autosomes, are preferentially expressed
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in the brain compared to other somatic tissues (Nguyen and
Disteche, 2006a; Nguyen and Disteche, 2006b). The accumula-
tion of brain-specific genes located on the X chromosome over
evolution puts them in a unique position to influence the CNS
response to injury. In EAE or MS, that injury would be an im-
mune attack. The CNS response to an immune attack involves
microglial and astrocyte activation, demyelination, axonal
damage, and synaptic loss in MS (Chomyk et al., 2017; Dutta
et al., 2011; Mori et al., 2013; Trapp et al., 2007) and EAE
(Centonze et al., 2010; Meyer et al., 2020; Nistico et al., 2013;
Rasmussen et al., 2007; Ziehn et al., 2012a; Ziehn et al., 2012b;
Ziehn et al., 2010). A sex chromosome complement effect in the
CNS during EAE was shown using the FCG model (Du et al.,
2014). Bone marrow chimeras were created to study sex chro-
mosome effects in the CNS, not confounded by differences in the
immune system. Specifically, XX versus XY− bone marrow
chimeras were reconstituted with a common immune system of
one sex chromosome complement. EAE mice with XY− sex
chromosome complement in the CNS, compared with XX,
demonstrated worse EAE clinical severity with more neuropa-
thology in spinal cord (axonal and myelin loss), cerebellum
(Purkinje cell and myelin loss), and cerebral cortex (synaptic
loss). This was the first demonstration of an effect of sex chro-
mosome complement on neurodegeneration in a neurodegen-
erative disease. These data coincide with clinical observations in
humans that while females (XX) are more susceptible to MS,
men (XY) have worse disability progression (Confavreux et al.,
2003; Koch et al., 2010; Ribbons et al., 2015; Voskuhl et al., 2020;
Weinshenker, 1994).

In an AD model where mice express human APP (hAPP), the
FCG model showed that mice of the XY− sex chromosome
complement had worse mortality and cognitive deficits than XX
(Davis et al., 2020). Also, lentivirus vector-induced knockdown
of Kdm6a expression in XX neurons worsened amyloid β (Aβ)–
mediated neuronal toxicity using in vitro assays, while Kdm6a
overexpression in XY− neurons reduced toxicity. This was
consistent with a dose effect whereby two copies of Kdm6a in XX
were protective as compared with one copy in XY−. Also, when
Kdm6a was overexpressed through lentivirus injection into the
dentate gyrus in vivo, there were less cognitive deficits in
XY−hAPP mice. The CNS cell that overexpressed Kdm6a after
injection into the dentate gyrus was not determined. Further
study is warranted using a cell-specific knockout of physiologic
levels of Kdm6a in neurons in vivo in XX-hAPP mice.

Together, the above reveals a deleterious effect of the XY sex
chromosome complement in the CNS in MS and AD models, but
the CNS cell type mediating this effect in vivo remains unclear.
Further, since selective deletion of the X-escapee Kdm6a in CD4+

T lymphocytes in C57BL/6 mice ameliorated EAE, revealing a
deleterious effect of Kdm6a on immune-mediated neuro-
degeneration, it is important to do selective deletion of the
Kdm6a in each CNS cell to ascertain the effect of Kdm6a on
neurodegeneration in a tissue-specific and cell-specific manner
in each disease. Since Kdm6a can regulate autosomal gene ex-
pression, this is consistent with studies showing sex differences
in gene expression which are tissue-specific and cell-specific
during health (Kim-Hellmuth et al., 2020; Oliva et al., 2020).

Sex differences in microglia
Microglia, the resident immune cells of the CNS, lie at the in-
tersection of immune and neurodegenerative mechanisms. Mi-
croglia can confer beneficial and deleterious effects during
normal development and disease (Hammond et al., 2019; Hong
et al., 2016; Schafer et al., 2013; Shi et al., 2017; Stevens and
Schafer, 2018; Vasek et al., 2016). Microglia become activated
in white and gray matter to play a critical role in neurodegen-
erative conditions (Absinta et al., 2021; Hui et al., 2020; Jackle
et al., 2020; Priller and Prinz, 2019; Schirmer et al., 2021;
Yanguas-Casas et al., 2020). Deleterious effects of microglia in
MS and EAE include creating a proinflammatory environment
that inhibits oligodendrocytes from remyelinating axons in
white matter lesions (Absinta et al., 2021; Kim et al., 2018). Brain
MRI has identified paramagnetic phase rims lesions in white
matter of MS patients, thought to reflect ongoing microglial
damage that contributes to worsening disability (de Haan and
Karnath, 2018; Ruggieri et al., 2018). Specifically, lesions with
outer rims indicate iron accumulation in microglia and macro-
phages, thereby serving as a biomarker for these lesions having
chronic-active inflammation. A sex difference was reported
whereby white matter lesions visualized in men were signifi-
cantly more likely to have paramagnetic phase rims than lesions
in women (Tolaymat et al., 2020). Deleterious effects of mi-
croglia activation in gray matter include synaptic engulfment
and synaptic loss (Schirmer et al., 2021; Werneburg et al., 2020).
On the other hand, beneficial effects of microglia include
clearance of myelin debris and other molecules toxic to neurons
and oligodendrocytes (Dong and Yong, 2019; Rawji et al., 2020).

Microglial activation is also an important component of brain
aging and AD (Grabert et al., 2016; Mangold et al., 2017; Mishra
and Brinton, 2018; Pan et al., 2020). Microglia are thought to
play a beneficial role in early stages of AD and a deleterious role
in later stages (Keren-Shaul et al., 2017; Stephen et al., 2019).
Genetic risks for sporadic, late-onset AD have been linked to
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2),
which is expressed in microglia (Jin et al., 2014; Jonsson et al.,
2013; Nguyen et al., 2020; Prokop et al., 2019; Ulrich et al., 2017).
Extracellular Aβ deposition is one of the earliest pathologies and
precedes cognitive decline. Activation of TREM2 in microglia
limits Aβ-mediated damage through plaque compaction and
clearance (Shi and Holtzman, 2018). Another genetic risk factor
is inheritance of allele 4 of apolipoprotein E (APOE4; Krasemann
et al., 2017). The APOE4 isoform is associated with higher Aβ
levels in brain than APOE3 (Stephen et al., 2019). Higher levels
of Aβ aggregates are thought to stimulate microglia activation
which could have deleterious effects on inducing oxidative
stress, mitochondrial damage, and synaptic loss (Shi and
Holtzman, 2018). A sex by APOE genotype interaction has also
been described. Namely, the beneficial effect of microglial on
plaque compaction in an AD mouse model was significantly less
in female mice with the APOE4 genotype (Stephen et al., 2019).
This aligns with clinical data that women who are APOE4 car-
riers have increased risk for AD (Riedel et al., 2016). The role of
microglia in the progression of AD as it relates to APOE geno-
type, sex, and aging remains unclear and is of major interest, as
reviewed (Chen et al., 2021; Patel et al., 2022). Other sex
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differences in microglia have also been reviewed in aging and
AD (Delage et al., 2021; Lynch, 2022; Yanguas-Casas et al., 2020).
The regions of focus are hippocampus and prefrontal cortex in
the context of effects on cognition. A variety of sex differences
have been described, most frequently involving the level and
functional type of microglial activation and its association with
synaptic phagocytosis and loss.

Estrogens and androgens have been shown to reduce mi-
croglial activation (Christensen et al., 2020; Drew and Chavis,
2000; Kim et al., 2018; Wu et al., 2013; Ziehn et al., 2012b), but
less is known about sex chromosome effects in microglia. Ex-
pression of Kdm6a/KDM6A in microglia in mice and humans was
examined by our group using an existing RNA sequencing da-
taset for the microglia transcriptome from forebrain
(GSE117646) of RiboTag mice (Kang et al., 2018). The mean
Kdm6a expression level in microglia was 32.07 transcripts per
million (TPM) in females and 23.04 TPM in males (P = 4.27 ×
10−12), whereas the average TPM for all expressed genes was 8.18
TPM in females and 8.18 TPM in males. In humans, using the
existing RNA sequencing dataset for microglia isolated from
corpus callosum (GSE111972), the mean expression of KDM6A
gene was 8.52 TPM in females and 6.19 TPM in males (P =
0.000857), while the mean TPM for all expressed genes was 3.14
TPM in females and 3.19 TPM in males. Together, this demon-
strated that Kdm6a and KDM6A are expressed in microglia in
mice and humans, respectively, and indeed showed a dosage
effect with higher expression in females than males. Selective
deletion of Kdm6a in microglia is now warranted to determine
its effect on aging and models of neurodegenerative diseases.

Concluding remarks and future directions
A cell-specific, region-specific, and sex-specific approach to
neurodegeneration is warranted and is consistent with the sex
bias in gene expression observed in humans during health (Kim-
Hellmuth et al., 2020; Oliva et al., 2020). There are gene ex-
pression differences from one brain region to another in neu-
rons (Ko et al., 2013), microglia (Grabert et al., 2016), astrocytes
(Chai et al., 2017; Khakh and Sofroniew, 2015), and oligoden-
drocytes (Marques et al., 2016; Vigano et al., 2013). A difference
in gene expression in astrocytes from one brain region to an-
other during neurodegenerative disease was first shown in EAE
(Itoh et al., 2018). Spinal cord astrocytes had decreased expres-
sion of cholesterol synthesis genes, and treatments targeting a
cholesterol transporter improved clinical scores and decreased
neuropathology (Itoh et al., 2018). RNA sequencing of astrocytes
from optic nerve identified the complement pathway as a po-
tential target, and sex differences suggested that treatments
targeting the complement pathway during optic neuritis may be
more effective in females (Tassoni et al., 2019). RNA sequencing
of oligodendrocytes in corpus callosum during remyelination
after cuprizone-mediated demyelination suggested targeting
estrogen response elements of cholesterol synthesis genes as a
strategy for enhancing remyelination (Voskuhl et al., 2019).
These examples provide evidence that understanding the effect
of biological sex on cell-specific and region-specific tran-
scriptomes in the CNS can point to novel treatments targeting
neurodegeneration optimized for women and men.

Since microglia reside at the intersection of immune and
neurodegenerative mechanisms, they are a critical cell in the

Figure 3. Bedside to Bench to Bedside to study sex differences in neurodegeneration: Region-specific, cell-specific, and sex-specific research. Clinical
observations of sex differences are investigated at the preclinical level and then translated back to the clinic as trials designed for each sex. Bench inves-
tigations entail in vivo MRI for region-specific atrophy, neuropathology of each region, RNA sequencing of each CNS cell from each region, immunohisto-
chemistry validation of genes in top differentially expressed pathways, knockout of target gene in each CNS cell (CKO) to reverse phenotype, and knockdown
of target gene with pharmacologic treatment (Tx) to reverse phenotype. Reiteration can determine the effect of genetic (CKO versus WT) and/or pharma-
cologic (treatment versus placebo) intervention on reversal of gene expression using the same cell-specific and region-specific approach in each sex. Also,
replacement of female versus male mice in the beginning with gonadectomized versus gonadally intact mice will reveal activational effects of sex hormones,
while FCG mice will reveal developmental hormone effects or sex chromosome effects, each in a region-specific and cell-specific manner.

Voskuhl and Itoh Journal of Experimental Medicine 7 of 13

X factor in neurodegeneration https://doi.org/10.1084/jem.20211488

https://doi.org/10.1084/jem.20211488


study of sex differences in neurodegeneration. Future directions
warrant a region-specific and sex-specific approach to the study
of microglia in health versus disease, as shown in Fig. 3. Such
preclinical findings can serve as a basis for translation to clinical
trials in humans. This will inform whether sex hormones, sex
chromosomes, or both contribute to sex differences in neuro-
degeneration across the lifespan, as shown in Fig. 1, paving the
way for discovery of precision treatments tailored to achieve
neuroprotection in women and men.
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Q1 To make papers more readable and informative, we request that all proper gene names be italicized.
Only actual gene names should be italicized, to distinguish them from gene products of the same or
similar name; ad hoc designations for genes; gene segments; and gene clusters, families, complexes, or
groups. With this in mind, please check that the proper terms have been italicized throughout.

Q2 Correct to change the hyphen to a minus sign?

Q3 Should this be "transgene"?

Q4 The phrase " females worse" does not seem clear. Kindly edit the senese to give better clarity.

Q5 Please spell out NOD, if possible. Also, is the period correct here?
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